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Wall corrections to axially aymetrio cavities in circular
tunnels and jets.

A. 11. ArmstronF ard K. G. Tadman

Using the fact that cavities re, at low cavitation numbers, approximately
prolate spheroids, this report develops the theory of wall corrections in closed
tunnels and free jets of circular cross-section.

* The results are di splayed graphically for a wide range of the ratio (cavity
~ilength) / (tunnel width.

In addition, a first-order theory is developed which applies only to small
cavities at low cavitation numbers. The wall correction is then shown to be
proportitonal to the cabe of this ratio, whereas in two-dimensional theory it is
proportional to the square of the ratio. Loreover, the corrections in a closed
tunnel arg shown to be roughly four tima as great as, and in the opposite sense
to, those applicable to free jets. In two-dimensional theory they are twice as
great.

The unaided theory yields information on the thickness ratio only of the
cavity, Howeve, if the additional assumption is made that the drag coefficient
is relatively insensitive to boundary effects - an assumption which is certainly
true for the two-dimensional case - than the length and breadth of the cavity
my be investigated separately. It is thus found that, in the axim trio as

in the two-dimnsional case, the boundary correction to the length of a small
cavity is proportionately twice as great as that to the widtho
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-Symbols Ow

* Roan letters

A,B auxiliary functions defined in equations (7.1).

o the radius or semi-width of the avitating head.

CS an auxiliary funotion of se used in equation (4.14).

OD the true drag ooefficient, based on the area of cross-section of the
oavitating head.

OL the modified drag coefficient, based on the area of cross-section of
the cavity.

CV," n coefficients defined in Appendix II.

Dt(it') an auxiliary funotion oft' used in equation (4.14).

3, 1' incomplete elliptic integrals defined in equation (4.5).

f the semi-length of the distribution of sources and sinks on the axis.

F, V' incomplete elliptic integrals defined in equation (4.5).

g() an auxiliary function defined in equation (4.2).

G a function relating the cavitation number to the sise of the cavity.

I(u') an auxiliary function defined in equation (6.3).

i V the Bessel function of the first kind and of order v

k, k' the modulus and co-modulus of elliptic integrals defined in equation
(4.4). Physically, k' provides a rough measure of the cavitation
number.

ku's the m th. positive zero of J,(s), taken in a3cending numerical order.

K a complete elliptic integral defined in equation (4.5).

a W is the axial component of fluid velocity.

so the particular value of m at the equator of the cavity.

M a function relating the strength of the uniform stream to the size of
the cavity.

p a parameter occurring in equation (3.2).

PC the unitrm ressure along the cavity wll.

P" the pressure in the undisturbed stream, far from the cavity.

q a mathematical parameter introduced in equations (4.14). Physically,
it provides a rough measure of the ratio of the size of the cavity
to the diameter of the stream.

cavitation number.
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7 G (,) the cavitation number in the unbounded stream which-
would yield a cavity of the length actually observed in the bounded
stream.

t W G ( js@ ), the cavitation number in the unboundad stream, which
would, yield a oavity of the width actuallr obsrved in the bounded
stream.

denotes o remair er term of smaller order than the term retained.

t a variable of mmantion.

u a variable of integration.

velocity of the undisturbed stream.

non-dimensional coordinate parallel to axis of qymetry unit of

length is
radius ofnon-dimensionatl coordinate perpendicular to axis of ,)tunnel

rimetry

X0 the semi-length of the cavity.

YO the equatorial radius or semi-width of the cavity.

)• K auxiliary functions oft' used in equations (4.14).

Y I( )J

,reek Letters

i,, rr, auxiliary functions of q, defined in equations (4.17).

& a mathematical parameter introduced by equations (4.1). Physically,
it provides a rough measure of the ratio of the alse of the cavity
to the diameter of the stream.

an operator inicating the difference between a bounded stream value
and the corresponding unbounded stram value.

, , PA' , d4 terms contributing to A I ( .0).

C the displacement of the jet surface at the plane of symaetry.

K' a mathematical parameter defined in equation (4.15). Pysically, it
is a function of the cavitation number only.

XM ccniooidal coordinates defined by equation (1.1).

U0, u particular values of p at the equator and pole of the cavity,
respectively.

V a parameter taking the value 0 for a free surface and i for a fixed

bound rin

the x-coardinate of a source element.

-2-
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40 • (x, A) that part of texia JcL ompon t of veloity ontributed ty the line
ource-sink.

' , (xY,v,p) a potential tunction detined in equation(,9),

*(X,Y) Stokes' stream function,

D(xY) a current function defined n equation (1.5).

0(x,y) that part of the current funatnoontobuted. t the l souroe-sink.

D(xy,u,p) a jIrtioular current function defined in equation. (3.2).

A bar indicates that the symbols apply to the unbounded stream.
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Introduction

The purpose of this report is to investigate wall effects an the overall
proportions of a cavity formed ty an axially strio body in rapid motion
relative to a stream of water. in the laboratory it is possible to measure the
dimensions of mach a cavity, formed in a stream having & Certain finite cross-
sectional area. The problem then is to calculate what the dimensions would be
if auch a cavity were formed in a stream of iAliited extent in all directions.

There already exists a oensiderable literature on the theory of wall oorrec-
timw applicable to non-cavitating flow in wind- or water-tunnels. In that came,
however, the boundaries of the fla are determined, being the walls o the tunnel
and the surface of the aerodynamo body under test, and the problem consists
of determining the corrections to be applied to the velocity or presswe field.
In aw case, on the other hand, the internal boundary of the flow is variable,
being the surface of the cavity, and only the presswe distribution along it
is known.

In two dimensions, the problem has been solved for Certain simple head
shape& by the use of conformal transformitions (ref. 1 and 6). In three
dJimnsions, even under the assumption of axial symetry, the powerful method
is no lauger available. A partial and approximte solution of the axially
Im trio problem will, however, be derived in the following pages by the use
of source-sink mthods.

The basic fact underlying our present method is that the shapes of mach
Cavities are known to approti to prolate spheroids. Furtherore, it is
possible to produce closed stream surfaces, which are either exactly or
approximately spheroidal in shape, by combining a very simple axial source-
sink distribution with a uniform stream of either unbounded or bounded extent,
respectively.

The characteristic feature of cavity flow in, of course, that the fluid
pressure is uniform along the free surface of the cavity, and a dimensionless
cavitation number, Q, is accordingly defined by the ratio

Here P and po are pressure in the indisturbed stream and the pressure on
the cavity well respectively, hilst p and U are the density of the liquid
and the velocity of the undisturbed stream.

In the flow-patterns which we shall construct by souroe-sink methods, the
pressure along the closed stream mnface will be only approximately uniform,
this constitutift an intrinsic imperfection of the mthod, and we shall adopt
the convention of considering the pressure at the equator of the stream-
mface as characteristic of the "cavity". The cavitation miober will then
be defined in term of this equatorial presure.

Nithout aq further assumptions we can then investigate the effect of the
boundary on the thickness ratio of the cavity, at a given cavitation maber.
In order to investigate the behaviour of the length and width separately,
however, we mki the asmAmption, rendered plausible by the known results oftwo-dimensional theory, that the drag Coefficient of a smell cavity is
unaffected, to a high degree of acouraq, by the boundary.

mum2
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1. Notation

* In this report it will be convenient to emplcy two non-diamnaonal
oaccdinate systems, an the necessary transformtions are set out here for
ease of referenoe. The oylindrical coordinate system (Fig. 1) win employ
x, mured along the axis of etry from the centre of the oavity, and
y, mured perpendicularly from the axis of srmetry. The ooniooidal
c te s ystem (Pl. 2) will emply ), which is oonstant on each mber
af a oonfoo&l system of hyperboloids of revolution, and u , which is constant

on each mmber of the orthogonal system of oonfoaLl prolate spheroids. The
fooi of this system are at y a 0 x z f, where f is a positive parameter.
The relations between (xy) and Ix,)-are

x/f a tanh X ooth 0

y/f a sech ) oosech J (1.1)

and, in particular,

when x 0 = 0 0,3

when y = o (Ixl ) =Xa + , (1.2)

*h n y 0 (II < f) 1i - - •

We shall study the shape of the closed stream-surface generated by the
superposition of a uniform stream of velocity Uparallel to the x-axis, on a
certain source-sink distributift. The latter extends along the x-xis from
- f to + f and has a density equal to x. The unit of length is the radius o
the stream at infinity, so that the limiting case of an unbounded stream is
obtai d by letting f tend to zero. The fineness ratio of the closed stream-
surface is controlled by the choice of U.

The saeid-length of the closed stream-surface, that is, the value of x
when y a 0, will be denoted by x.. Similarly, the equatorial radius of the
closed stream surface, that is, the value of y when x u 0, will be denoted
by yo On the same basis, the value ofj at x 0, y = y o, will be denoted
by , and the value ofy at x a x yO, will be denoted by ,.. Thus

yo/f a oosech0., ()

x /f - ooth .

The results of the analysis wil be displayed in the form of a comparison
between the propeaties of the closed stream surface for general values of f
with the corresponding proprties in the lmiting case of the unbounded stream.
Accordingly, it will be convenient to use a bar to indicate values applying to
the case of the unbounded stream, and the symbol A to indicate the differenoe
between the value for the bounded stream and that for the unbounded stream.
Tims, for euple,

It is usual to describe axisynm tric flow patterns by means of Stokes'
stream function (x y), where 2wr*(xy) -is the rate of volume flow of liquid
thrMoh the oirole 1%,)- in the..poitive direction of x. Because, however,
this function vanishes identioally on the axis of rWetry, it will be =we
convenient heretq uae*-a current function 0(x.,y) defined by

a y'(xW) O'~(Xy) 0 (.5)

This fUnot$4 # t. Obvious 'plsical significance, for it is equal to half
th vere a ..44p*nt l.f *elQcity iniOe& the circle (xry)..-It vanishes on

t x ow I,+ .' ..... .points, -amely the stagnAtia poptg. !I X- 0.

.54-
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The closed stream surface #(x.y) a 0 breaks up into two branches
namely the axis of symmtry y a 0 and the closed stream surface 5(xy) - 0.
It is only the latter branch which is of interest in this paper.

From this point onwards, in the interests of brevity, we shall replace
the strictly correct appellation "closed stream sarface" by the rather
loose term "cavity".

The axial omponent of the fluid velocity at any point of the flow will
be denoted by Wi, so that m is a lunotion of x and y, or of W and p . In
practice, however, we shall only study the variation of m in the plane x n 0,
where, by synotry, W is the actual magnitude of velocity. The particular
value of m at the equator of the cavity will be denoted by me, and it follows
easily from Bernouilli's law, and the definition (0.1) of the cavitation
number, that

I Q ma (1.6)

It is often convenient in cavitational theory to consider two drag
coefficients, the first, CD, being based on the area of the plate which is
supposed to be causing the cavity; and the second, C , being based on the
-xi- cross-sectional area of the cavity. It will be convenient to

distinguish between the two by referring to them in this report as the "true"
and the "modified" drag coefficient, respectively. If the radius of the
oavitating plate is denoted by c, then we have the obvious relationship

y. / C y - '/C . (1.7)

Simmons (ref. i) has shown, from considerations of aimntum and continuity,
that

: - 2ye';2 (. 1)" y dy ,  18

VC
the inteEral being evaluated along the y axis (x = 0). It will be possible
to calculate the boundary effect on 06, and hence, by making a plausible
assumption as to the behaviour of CD, it will be possible to deduce the
boundary effect on the ratio ydo from equation (1.7).

2. Cavity in an unbounded stream

'Ie develop first the theory for the unbounded stream, as the analysis
required is ainpler than, and copletely dissimilar from, that required for
the stream of finite lateral extent. The fact that this case corresponds to
a vanishingly smll value of f is no inconvenience, since all the ratios of
length which ooor in this section are finite in size.

The current function 71(x,y) of the flow pattern is given by

2". fy) " V +'ff r'" +

After transformation to the ooniooidal coordinates (),) this is easily

integrated to give

21(xy) U-- (f sih2 -U) . (2.2)

The cavity surface lRx,y) = 0 is thus the prolate spheroid V e

shere

-6- j
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V .M .) Wi . 2* 10 . 0, (2.3)

and ;..(2.4)

The axial omqponent of velocity is given by the equation

;! Y 2;- + 2 y (2.5)

In the plane of simetry, where k 3 0 it follows from (1.1) that the operator

(y,/dy) in equivalent to the operator (-tanh u d/d ) so that the
substitution of (2.2) in (2.5) yields eventually

G-1) u- =h,. (.-o). (2.6)

Hence, using the relation (1.6), we obtain for the cavitation number the
expression

-1.(2.7)minh "o os" o -'a

The dinensions of the cavity are obtained iinediately from (1.3), thus

YO/f • conech "o

and lef a oo -0 (2.8)

ioreover, on substituting (2.6) and (2.7) into (1.8) and evaluating the
integral, we find that

asinha ;0 (Ini cosha ;0 - tanli' ;). (2.9)

3. Cavity in a stream of circular cross-seotion

In the previous seotion we examined the flow patterns produced by a linear
distribution of sources and sinks immersed in an otherwise uniform unbounded
stream. The object of this section will be to examine the flow patterns pro-
duced by the saw line source-"nk imersed in a stream which has a finite
ciroular cross-section. It is convenient to take the radius of the cross-
section of the undisturbed stream as unity, so that certain boundaz7 conditions
have to be satisfied on the cylinder y a 1.

ge &hall consider tw cases, firstly when the stream is enclosed by a
rigid cylindrical wall, and secondly wu it In cpei 0 all sides to an atmosphere
at constant pressure. The first case obviously imposes the boundary condition

-7-
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that the cylinder y a I shall be a stream surface, in other wordsQ(xt)u.
e-wstant. Moreover, consideration of oonditions far upstream or downstream
a' the cavity shows that the constant is simply I U.

In the second case the mathemtical boundary oondition only approximates

to the physical boundary conditions. For, instead of ensuring that the velocitV
magnitude shall be constant on the disturbed free surface, we actually stipulate
that the axial coponent of velocity shall be constant on the cylinder y a t.
The validity &i p mon has been invstigated in Appenclox I, where
it is shown that the errors involved are not serous1 in that part of the fieldl
which form the subject of this report.

The current function due to a unit point source situated at (R.O)
insde a free or fixed cylindrial boundary, having the equation y .1, is
given by ref. 2, )

II (r.i

Here

O)(zYyyP) (-k,,,,) 1.--,,, , (3.2)

k is the m th. positive saro of Jv(z), and v x 0 for a free boundary
va'atv I for a fixed bundary.

on inteprating from Z z -f to f = , to obtain the current function

Os(x.,y) due to the line source-sink, the result takes different analytical
form according to the relative magnitudes of x and f. The two essentially
different cases are as follows:

(in)

when 0 CI cf,f: f
n [ n(x-Cy,v,-2) + 0 (x-. Y,v,-3), + "L V(fZO )

0 [ (C-xyv,-2) -o(!-xY,v,-3) 1 '/"] • (3.3)

(ii)

When f i z

S[ r" ,y,v,,-2) + f~x.j,,-3)] (3.4)

The current function of the combined flow pattern, fl(Y,y), is simply

the am of the current function due to the line source-sink, f( .)



and that due to the uniform streams thus

e (=) , f u nCX.Y). (3.5)

The function fi(x y) is the sim of an infinite series of produots
of Bossel functions and exponential functions, but, by means of certain
transformtions listed in Appendix II , it can be expressed in another form.

2,(zxy) - - (ji,25- u) * Lt , k f'+ R (xyf) , (3.6)

t. -are constants and R (xyf) is the sum of an infinite series
Whoe nth. team is a hgeneous polynomial in xy and t of degree (n + 3).
This tam demonstrates the similarity between the current function for
unbouande flow (2.2) and that for bounded flow (3.5), and will be particularly
useful In a later section for developing a first order theory for s=n1
cavities.

The equation of the closed stream surface my now be obtained by equating
D(x,y) to sero. The resultifng functional relation between x and y is rather

coqplex, but we shall investigate only the overall dimensions of the cavity,
namaly x* wa Ye • These quantities - the semi-length and equatorial radius
of the cavity, respectively - are given by the equations

O(=x,O) = 0 andl(Oo) 0 (3.7)

Next, it is necessary to differentiate yan(x,y) partially with
respect to y, in order to obtain the axial velocity coonent m U • We
observe that

-I a- tfy(XYy,~ up = O(x,yu,p+1) (3.8)

where

* J0o(k1, *y)
#,(-, ,,,p) ., (-,,,,, p io,.) ,,p(-k,.x (3.9)

It follows from (3-.5) that

no 3(X1Y) , U - .(xy) , (3-.10)

where

,(xy) # ( ( L,, -4) O(xCy, , -2)])x - ti, xl)

+~(-~~,1 - -zx,y,v,-2)J' (0 cx cf) (1)

or

v -1 (x-~y,)+ ((f-,y, V, 2 ) f 4 x)

-9-



on use of the transformationm given in Appendix n , one can
expreee 3.10) in the form

(m-4) u -. cosh X sinh , u eoh(X+) + -- oh@ 5-)Ii L50 ,a. " 3+ (, r f);

(3.12)

alternatively, this expression my be obtained direotly from (3.6).

Tn particular, at the equatorial plane x and X vanish, so that, from
(3.10,11, 12,)

(m.4 ) u. 2f (f . .,) - (ty, v,-2) + 4(Ov,-2) * v ( (.

(X9) (3.13)

Up- tsn + L C,,, f R (0,y,f)

and the corresponding formila for m is obtained by simply adding the
suffix sero to the symbol m, and 0 . Finally, Q follows from equation
(1.6), and (1.8) then yields after a numerical integration.

4. First order theory for two-dimensional cavities

Before developing a first order theory for axially symmetrio cavities
it seems advisable to set on record the oorresponding results for two-
dimnsional cavities behind a flat plate. The exact mathematical theory of
a two-dimensional oavity behind a flat plate in a bounded open or closed
stream has been developed by Simons (ref. 1) , but a certain amunt of
algebraic manipulation is neoessary in order to extract the results which
we require.

(a) Closed tunnel

A suitable starting point for developing a first order theory in the
case of the closed tunnel is furnished by Sion's equations (47, 54, 56
and 62) (ref. 1) . In the present notation, these become:

o- s - g() + k' sec 6 t&n"(k'tan6)

•kowxo = ka K sin 6  - sea 6(1-..'sin6)"' Ii1 3(6) - E (),

f.kmoyo - g(b) + k' 6 sec 6 (

kecCr/4MD- g( 6)

where

9(8) - sec 6(-k'sin6)"' IK K (6) (E'-K') F(6)] - k' K's4nS, (4.2)

and

kma a see 6 I(1-ktsir')'"* + k'j (4..3)

-10-
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The inooqlete elliptic intepals are defined ty

r6(()- ir -0'siau)" am

w,(6) ,, f (..-kaaina)-,, ,

and the omplete elliptic integ'als I and K by

- 3(u/2) , K - P(--/2) . (4.5)

Primed letters far ocomlete elliptic intejrals incicate that the modulus
has been replaoed by the oo-madulus k '(k+ k'a . 1).

The assuqtion that k' is mall leads to series expansions valid for
mill values of the oavitation ntmber. Thus, from (4.2),

g(6) = r k" tan Ps 6 [i + O(k"),

an benos equations (4.1) take the farm

knoo a (r#+k) k" t, b -soo ji + (k"a) I

4 - gd-61 O(k"),

a- moqo = k' 6 ae6 11 + -E k' tan/6 + O(k')] i
kua%&. - r k" tan8 seo6 11 + O(k"),

and (4.3) become

k,. i + k' .eo6 . O(k") . (4.7)

On dividivg the last three of equations (4.6) by the first, the
dimnel o of the cavit are expressed in term of the width of the CaTitating

plate; thus

80066.. 1(1 + 0(k")l

medRIU~ i 0 (ks)1

,,.,
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7 The equations (4.8) involve the two psarmsters 6 , which broadly
represents the effect of the tunnel also, and k* , which broadly represents
the effect of cavitation number. We ah&U qpw separate these two effects,
so far as this in possible, by writing xO, y@ and OD for the limiting
fors of xo, yo and CD , respectively, as 5 tends to sero, that is to say,
as the tunnel cross-section increases indefinitely. First skning the
substitution, obtained from (4.7),

k' so6 . Q i -t Q * o(')J. (.9)

we find that

16,. 1 j+ S) ,

ii 8 1 +TiQi + (S (41

and 2w ~.o~~)

where the right-hand members are functions of Q only. The corresponding
correction factors, expressing the effect of tunnel size, are then found to

be

Yo - ; ;c u 0 ) (4'.1)0

d~~~Y -- +q).

CD

It will be noticed that these correction factors are not entirely independent

of the cavitation number, although when the cavitation number is sall the

inter-dependence is only slight.

The precise physical signil'icance of 8 is apparent from (4.6), which

shows that it is related to the length of the cavity by the equation

*rgd-'6 - Q * o(Q,) . (4.12)

-12-



Accordingly we plot in Fig. 3 the behaviour of l/we and Y./y, as
functions of x. in the limiting case when Q w 0 , (a is then negligible
in oomiarison with Yo or 5o,) using 6 as a parameter.

Up to this point no restrictions have been impoaed on the parameter 8,
which is free to range from zero to I W Aooordingly our results are
valid, for sml values of Q , whatever my be the ratio of the lenath
of the cavity to the width of the tunnel. It should be noticed however,
that, as Si ons pointed out, the ratio of the width of the cavity to
the width of the tunnel imst necessarily be sinfwhen Q is Mll.

No now particularize our results to the case of cavities which are
short comared with the width of the tunnel. Then 6 is small and the
equations (4.11) reduce, by virtue of (4.12), in the case of vanishingly
mall cavitation muber, to

/x Z io - z7 ' + O(X0) ,

Y/5 - i + X a0 + O(Lo') 0) (403)

and C/D:

These results my be simply expressed in words as follows:

i) For small values of the cavitation number the ratio of the length
of a cavity to the width of the stream may be of arW order of magnitude,
although the width of the bubble is necessarily small compared with either
of these dimensions.

(ii) The true drag coefficient of the cavity tends to be independent of
the blockage ratio, for s=al1 cavitation numbers.

(iii) When the ratio of the length of the cavity to the width of the
stream is small, and the cavitation number is also swall, the length and
breadth of the cavity are both increased by an amount proportional to the
square of this ratio, and the proportionate effect on the length is twice
as great as that on the breadth.

(b) Free jet

In the case of the free jet, one of the present authors has adapted
Simmons's results to a form which furnishes a suitable starting point for
the present treatment. Thus, from equations (3.8), (3.9) and (3.10) of
ref. 4 we have

-13-



+ f .0o. =4 q"I q' Ci(ar'),
two

Smoo -. q'' q' Z(.')

a*mo -,4 q1/ Z q' w') (4.14)

t.0

where

K' - Q/(2 Q) (4.15)

and Citi'), XJ(w), YC (x), D,(x') are ]mown functions. In one
respect these initial equations are simpler than those (4.1,2,3) for the
closed tunnel, since one of the zmthematioal parameters, naely K',
depends on the cavitation number Q only. On the other hand, of course,
they possess the compensating disadvantage of involving infinite series.
The other mathematical parameter, naey q, represents broadly the effect
of tunnel else and is accordingly analogous to 6 in the previous case.

In order to study the case of emil cavitation numbers, we expand each
of the coefficients of q6 inequations (4.14) as series is ascending
powers of K' and obtain the following results

woc = (wT+ 4) q'1O r,(q) I " * O(K'R)J

ffoo= 4 q'/ r,( q) +1 0(KS
(4.16)

MOYo = q"' 14 r,(q) K' + I rq) K, + o( ')

and wI%/mo -2 iq" r(q) '" I, + 0(K"),

where r,(q) = I + 4 q + 6 q' + 8 q' + O(q') ,

r,(q) - 1 + q + + q' + A q3 + o(q') (4.17)

and r,(q) - 1 + q + q + q.3 + O(q') J

-lS
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4 Division of the latter three equations of (4.1) tV the first gives
expressions for the oavity dimensions in term o' the width of the cavitatirg
plate, thus

a g4r, q) I 2 'OK

Za • K (4.18)

C

andD 2r 1, + (ua,)j.

The similarity between equations (4.18) for the free jet and (4.8) for

the closed tunnel is already olear, and it is perhaps worth mentioning in

passing that the relation between k* and x " is

' tanh[ y-tanh ks (.19)

so that K' and k' tend to equality when smfL.

Proceeding as in the earlier case, we now write z 0 , o and
for the limiting forms of x., y 0  and 0 D , respectively, as q tends to

seo, that is to say, as the tunnel cross-section increases indefinitely.

On using equation (4.15), this leads at once to a restatement of equations

(4.10), shewing that our two definitions of xo, y 0  and ID are,

in fact, consistent. The corresponding correction factors, expressing the
effect of tunnel sie, are found to be

S Ii . o(')1 (4.2)

and ==i + 0(Q')
CD

See note at end of this section.
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The physical si'ni.icance of q may be deduced from the second of
eauations (4.16), which becomes

/= q1/2 rq)I1 - Q + o(Q2)J . (4.21)

Using q as a parareter, we can now plot in Fig. 3 the variation ofx,/
and y,/7, as functions of x, , in the limiting case when Q vanishes.
The above results are true for quite general values of q between 0 and
1, although coefficients of higher powers of q than are contained in
(4.17) would be necessary to obtain reasonable accuracy in the evaluation
of the functions r, (q), r, (q) and r,(q) when qbecomes appreciable in
size. The evaluation of further coefficients would be tedious but not
difficult.

If, however, we now particularize to the case of small q, that is
to say, when the length of the cavity is small compared with the width
of the jet, the equations (4.20) reduce, by virtue of (4.21), to the
forimulae

XO/O - x 0 + 0(X,4),

n ,Vo 2 - + (Q • 0) (4.22)

and C1 /r D =1

These particular results have already been obtained in an earlier paper,
but the general results (4.20, 21) are new.

It will be observed that equations (4.22) are very similar in form
to equations (4.13), the only difference being that the coefficients in
the case of the free jet are of opposite sign ana of half the magnitude
of those pertaining to the closed tunnel.

NOTE:

It will be observed that in the limiting case when Q = 0 , equations
(4.11) and (4.20) both imply that the true drag coefficient is completely
independent of cavity size. This statement, however, has not a great deal
of practical significance since in this limiting case the cavitating head
itself must vanish. This is clear from equations (4.6) and (4.16), for c
vanishes with k' (or Kt ) , whatever the value of8(or q).

At first sight this result, as regards the free jet, seems to be at
variance vith previous results (see for example, refs. 4 and 6), where
the variation of the true drag coefficient at vanishing cavitation number
is actually studied quantitatively. There is in fact, however, no con-
tradiction, since in the earlier papers the cavity was allowed to be open
at the rear, whilst in the present paper it is necessarily closed.
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5. First-order theory for axially symmetric cavities

With the results of the exact two-dimensional theory to act as a guide,
we are now in a position to develop the first order formulae from the
approximate axially symmetric theory.

Since it is required to compare the properties of cavities in bounded
and unbounded streams at a given value of the cavitation number, the
fundamental connection is

mo= mo (5.1)

For the other variables, we express the bounded stream value as the sum of
the unbounded stream value and a small increment. Thus, for example, the
equation (3.13) evaluated at the equator of the cavity becomes

(mo -1)(TI+ A)= o+ Agothgo - oh'g o +L Cv.f +R (5.2)

*Aere R will be used to denote a remainder composed of smaller order terms.
On the other hand, equation (2.6) evaluated at the equator of the cavity
becomes

(;o - I) 0 - tanh- , (5.3)

and accordingly, by subtraction,

(no - 1 ) AU = tanh2 -o O + _L C R • (5.)

Similarly, since the value of m at the point (O,yo) is go , we find
from equations (3.5, 6 and 7) that

V J J-sinh 2 o + cosh2_ go -;o -oAgo -LCu, f3(55
3 V, f+ R , (5.5)

whilst, from (2.3),

= + dinh 2 " -"c (5.6)

A subtraction now yields the result

4U = 2 sinhago Ago -I C1 . 2 f3 + R . (5.7)
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Again, the value of g it the ooint (xoO) is g.,i.e. T. '+ Ag p
so that (3.5, 6 and 7), together with (2.3, 4) give a result
,.recisely 5inalar to .7I,, but vith the subscript a replacing tnc subsc-ipt

o throughout. Since, however, we have already noticed (2.4) that 'o = "'
it follows that u, = , and the cavity in the bounled stream is still
a prolate spheroid, to the present order of accuracy. This 2x t is also
clear directly from (3.6).

Elimination of U between equation (5.3) ind (5.6) yields an expression
for (m - 1) , which may be equated to a similar exmraession obtained by
eliminating AU from (5.4) and (5.7), thus

.... tanh -A cu.f +R (5.8)
-L sinh2 o- 0  2 sinh 2  oApo " 2  f'+R

2 sihg - t

Now, when the cavitation number is very small, these two expressions for
(me - 1) must tend to zero and hence _o must tend to infinity. ',oth the

numerator and the denominator of the left-hand member of (5.8) are then
clearly dominated by the leading terms. It -ray then be deduced that, in
the right-hand member of (5.8), the numerator is tominated by the second
term, whilst the denominator is dominated by the first term. It follows,
since sinh 2 o - 2 sinh2 2o , that

In order to deduce the corresponding change in the proportions of
the cavity, observe that, from (1.3),

yo/xo sech o,

so that A(Y/xQ) = - (5.1)

Combining (5.9) and (5.10), we find that

(.o .. ) . (5.11)

The numerical values of - C , 2 're (riven in Appendix I, 's

CO 2 = .205911... -C, = - .796821... (5.12)

so that the corrections to be applied in a closed tunnel tre of ow,' osite
sign, and roughly four times in mazgitude, those to be applied in a free
jet. This makes a reasonable comparison Yrith the two-di.:en;ional case,
where the corresponding factor i! exactly twio.



Again, the corrections to be Li,iieJ are 'rccrt onal to the cube
of the ratio of the length if the cavity ti the iriath of thc axially
syr&:etric jet, -M.wilst in tv-, di ensions the cu'rect-ons were proportional
to the square of this ratio.

There is an important dissimilarity between the twio-dimensional and
axially symmetric results, however, in that the numerical coefficient in
the latter case tends logarithmically to zero with the cavitation number,
whereas in the two-dimensional case it tends to a finite limit.

6. Use of the drag coefficients todetermine cavity dimensions

The width of the cavitating plate, namely 2c, does not appear in the
analysis which we have developed for the axially symmetric cavity, so that
it is impossible to determine unaided the variation of the actual cavity
dimensions, as distinct from the thickness ratio yo/xo . However, it is
clear from the two-dimensional theory that the true drag coefficient q) ,
based on the cavitating plate vridth, is very insensitive to boundary effects,
and by assuming that the same is true in the axially symmetric case we can
calculate the variation of xo and y o separately.

From equations (1.7, 8), the true drag coefficient is given by

C (yo2/c) CD , (6.1)

where - sinh2 go I(,o) , (6.2)

and I( go) = 2 f- 2  (m -1) 2 y dy * (6.3)

Io

Taking logarithms in equation (6.1) and subsequently :>erforming the operation
A , we find that, since CD = CD by assumption,

24 ' = -_ (6.4)

The cavitation number Q is the same in both bounded and unbounded cases,
so that

LC = sinh 2 o Ago T(7o) + sinh2 , A (go) (6.5)

On making the transformaLtion to the conicoidal coordinates (1.1) and remember-

ing that the path of integration is along X 0 , (.3) becomes

M o

I(g0) = 2 f (m - 1)2 cosech ' g co+h M dt , (6.6)
•'sinh" f
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whence, in particular,

' I(To) = 2 'go cotho - 2 In cosh Uo " 2 cosech2 - - 1,(6.7)

and

The quantity AI(o ) may be evaluated from (6.6) as the sum of four
parts, thus

AI( go) Ai+ As,+ A + A, ,(6.8)

where A,_ 2 ( o-1)2 cosech2 MOcoth -o Ago + R

3 4 0 (o.) (go - (6.9)

sinh" f

anrA A = . 2 1° (;- 1)
2 cosech2 M coth g dg R

-
( o . (6.10)

IfE2

The two contributions A, and A2 result from the alteration of the upper and
lower limits of integration in I( ° . The remaining contributions, A3
and 4A, result from applying the operator A to the integrand. For a given
value of M , the only factor in the iht-egrand which is susceptible to A is
(m - I)a . Now, from (3.13) and (2.6)

A I(m-1) U 17 (m-i ) + (;n-I) AU =jCV,,a f3 + R

so that 1 A(m.A) -1 C ,2 f - (2) f3 . (6.11)
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On using this result we now find that

go

3 A, (M-i) cosech 2 g Coth M dp + R

U

'(P. ") ; (6.12)

and

A4= 2U 1(7,) + R

(pr 2.o f (6.13)3 PoTJ

It is clear that when f is small, and when go o that is to say,
when the cavitation number is also small, A, 6 2  and A4 are all small
compared with AS  , so that equation (6.5) bdcomes

-I- 0 i sriizf I Csnh v , 2 f 3 . (6.14)

The first term inside the square bracket may be neglected by comparison
with the second term, when -o is large.

Examining the relative magnitude of the terms in (6.2), we find from
(5.8) that

Q 2(;n0-1 2 PQ'5infh 2 
-o (g , .,(6.15)

and from (2.3) and (6.7a) that

Slinh2 -o I~) (n4-i)oh2 -go (6.16)sihg-o I(-Mo) - (In 4+ - l)osh" (go - =);(.)

so that the second item is negligible compared with the first.

Substitution of the results (6.14, 15 and 16) in equation (6.4)
produces the result

4A ACt Vf sinh2~

C 2f 3 (P -) . (6.17)

3 -1



Finally, since

Inx o = lii Yo - n (y x) 0 )

we find, on applying the operator A , that

AXI Yo Y Q/io0

2Cv. f 32C I _ .0 )4, (6.1 I 8)

3 uo

by virtue of (5.11) and (6.17).

The results (6.17) and (6.18) for the axially symmetric cavity are
analogous with those (4.13 and 22) for the two-dimensional cavity. They
state, in fact, that, for a small axially symmetric cavity at low cavita-
tion number in a closed or open tunnel of circular cross section, the
boundary effect is proportional to the cube of the ratio of cavity length
to tunnel breadth, and the proportiamte effect on the cavity. length is
twice as great as that on the cavity breadth. Furthermore, the boundary
effect is a shrinkage in the case of the open jet and an expansion in the
case of the closed tunnel, the latter effect being roughly four times as
geat as the former.

7. Numerical results

The simple first order results deduced in sections 5 and 6 apply only
to the doubly limiting case when both Q and f (or x o ) are very small. One
of these limitations, that of small cavitation number, applies also to the
more general theory developed in sections 2 and 3, for the prolate spheroids
investigated therein satisfy the constant pressure condition of cavitating
flow only when the thickness ratio yo/x 0 is very small.

The condition that the length of the cavity should be small compared
with the width of the tunnel, however, is not necessary to ensure the
validity of the theory of sections 2 and 3. It is true that the width of
the oavity must be small, in order that the mathematical boundary condi-
tion applied to the surface of the free jet shall satisf ctorily represent
the actual physical boundary condition. But for any -iven cavity length,
the width of the cavity is bound to be small when the cavitation number
is small enough, so that we do not need to stipulate that, in addition,
the length of the cavity shall be small.

Accordingly, it seems worth while to evaluate the results of the
general theory for a wide range of values of the non-dimensional cavity
length xe , and for various small values of Q. In order to be convenient
for practical use, the results have to present, for ,-iven vwlues of Q,
the variation of the thickness ratio ye/xe as a function of some easily
measured length, such as x, . In view of the fact that Q is only obtained
in terms of x0 , yo and f after a fairly lengthy calculation, some care
is necessary in order to reduce to a minimum the labour and inaccuracy
involved by inverse interpolation. The method of calculation which was
eventually selected will be briefly described.
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The cavity in a bounded stream, at a given value of the cavitation
umberQ* is characterised by a trio of values us, ye and f 9 con-

nected by the relation (1.i3). This value of ve corresponds, In an
unbounded stream, to a slightly different value of the oavitation number,
which we shall denote by Qv a G(pe).

Similarly, the cavity in the bounded stream is charaterised, for
given Q, by the triglie., xe and f, connected by the relation (1.3). ie
accordingly define Qz a C(jj, , that is to say, the cavitation zubw in
the unbounded stream which would yield a cavity of the length aotual3y
observed in the bounded stream.

The essence of our method is to form estimates of Qv and 41 from
the given value of Q and hence by ing (2,7) to calculate ae and a. ,

which yield the required values of ye and x . The process is iterative,
sincj each estimate of Y9 and xe  enables a Utter estimation of Qg
and az to be made, and these in turn lead to improved estimates of y#
and xo.

The first step was to tabulate Q as a function of -us , using (2.7),
at intervals sufficiently close to make inverse interpolation simple and
accurate (Table I). Next, taking in turn the values y a 0.05 (0.05) 0.35,
cocbined with the values f a 0.5 (0.5) 2.0, the funotit U(yo, f) was
calculated from (3-.5) by setting O(O,Ye) w 0 . For the same values of

o and f, the product (m - I) U me also calculated firm equation
(3.13). Simple division then yielded m , from * Q followed by virtue
of (1. ). Fcr the same ratios ye/f , the function Q mas jpalculated
directly from (2.7). ith f as a parameter, the difference QU - Q me
tabulated as a function of yo, and the resulting second differences were
sufficiently steady to ensure satisfactory direct interpolation (Table I).

In a similar manner, but setting 0 (a,,p) w 0 in place otfl(oye) . 0,
the function Zz - Q as tabulated an a function of xe , with f as a para-
meter, intervals of 0.02 in the argument being quite small enough to ensure
accurate interpolation (Table III).

Fr a riven valuL of Q and one of the tabular values of f , the first
estimate of Ty (or Q z ) ma simply Q itself. The corresponding value
of us (or Am ), obtained by inverse interpolation from Table 1, yielded
a first estimate of y9 (or Xe ). The corresponding estimate of the
differenoe Tg - Q (or qz -_q ) was interpolated from Table II (or III)
and an improved estimate of QV (or 'z ) thus obtained. The cyole was
repeated until the value of ye (or Xo ) so obtained as not subject to
further change, *whn .t me assumed to be correct. Convergence of the
process ma rapid.

The advantage of this method of computation is that the use of the
unwieldy formlase involving infinite series, which are applicable to
bounded stream, is kept to an absolute minimm. The only inverse inter-
polation required is for the comparatively simple relation (2.7), which
applies to an unbounded stream.

The oalculations of 06 were planned on similar principles, this
being rendered even mwe important owing to the fact that numerical inte-
gration as involved. The expression (1,8) for 06 mas split into parts,
thus

-23-

I



rr ..

A Q - (i - *1808 (7.1)

*Vq1

0 (7.2)

D a •2;' - Os 0 - (a - O) Val of

"V 0

The mall numeial integral B ms tabulated (Table V) for the sm
values of ye and f as those used in the oopilation of Table II.
Then for one of the chosen values of Q, and a tabular value of f, the
previously computed value ofy enabled the value of B to be Inter-
polated, whlst the value ofA me readily calculated analytically.

The results at our computations are displayed in Figs. 4 - 6.
Fig. 4 shws the behaviour of the ratio (y/ a)/(y,/xe) as a function
of x e & in the case of the open tunnel oP oircular cross-section. A
corresponding cuve for the to- dmnsional case is shown ddtted for
opparison. PU. 5 shows the ses function plotted against the blockage
rj"tiO, that Is to say, y In the case of the two-dimnsioal curve, and
Ye in the ai-ly symtrio case. Pig* 6 shows the effect of the
free strem boundary on the modified drug coefficient based on the cavity
dAsmter. As explained in Section 6, we my draw the inference that the
mx:imm croes-sectional area of the oaviqt behaves in an approximately
reciprocal maner.

When this report ma in course of preparation, it ms learnt that
a closely si ilar Investigation as being oonducted at another Government
establis mnt, nmely, the Amiralt Research Laboratory, Teddington.
It was therefore agreed to divide the field fa nuamerioal work between
the two establishmnts, Acdingly, the nmerical results depicted
in the graphs at the end of this report refer onfly to open jet tunnels,
dhch are of mare particular interest to this establshment. Zt is
understood that a report containing similar results for closed tunnels
Is being published by A.".

8. O aclusions

The wall corrections neessary to masurements of axiallyo etrio
cavities in circular tunnels of free Jet 'p have been displayed graph-
ioall. Thes remlts are applicable to uMm values of the cavitation
numer but to arbitrazy values of the ratio (length of cavitWyfvidth
af roes-eeotion of tmel) nx .

For the ase dn e Is =all as weU as the cavitation me we
hae demontrated the following resultes

L I1



(a ti u4mISOMM* flow

(1) the fractional increases (closed tunnel) or decreases (tree
jet) In the lengith and width of the cavity a"e both pzro;Wtitnal

to x * . The factors of proportionalit are

length width

closed tunnel 9V4112 /2

free jet -0 2 41  - w/48

(ii) the true drag ooeffioient, based on the cross-sootional area
of the cavitating head, is unaffected by the tunnel boundary.

(b) 1-_wz~yA-32 i flo

(i) Qsg fractional decrease (closed tunnel) or increase (free
in the thickness ratio of the cavity is proportionil to 3os,

The factors of proportionality tend to sero with the cavitation
nmber, but they are in the following ratio:

closed tunnel - .796824

free jet + .205911

(ii) assuming that the true drag coefficient is unaffected by the
boundary, then the fractional increases (closed tunnel) or decreases
(free jet) in the length and width of the cavity are both proportional
to x3 . The factors of proportionality tend to zero with the
cavitation number, but they are in the ratio:

length width

cloged tunnel 2 x .796824 .796824

free jet -2 x .205911 -. 205911
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Appendix I

The ftlidity of the approximate boundary condition at the free surface

The pbysical bou ar7 condition at the free surfaoe of the et differs
from the approximate mathematioal boundary condition in two respects, We
have, in fact, satisfied the wrong boundary condition at the wrong plaoe,
and it in necessary to see whether the inaccuracies involved are serious.

Owing to the exoessiw awwit of numerical work which would be involved
in an exact investigation, we shall restrict ourselves to a numerical check
in the plans ot symetry, together with a survey of the order of magnitude
only elsewhere.

One of the inaccuracies involved is due to the displacement of the
tree boundary, and this is obviously a maxi m m at the plane of qmmetry,
where we shall asum that the radius of cross-section is I + i.

The other inaccuracy is due to assuming that the velocity magnitude
at the boundary in adequately represented by the axial component of the
velocity. This particular error, which vanishes at the plane of synmntry,
is obvioualy a oosine effect" of the angle of inolitation which the free
surfaoe makes with the axis. The order of magnitude of the maximum angle
involved my be taken as given by C If.

The equation of the "free boundaryu of the jet, when calculated by
the present approximate meth6d, is

Y" Ift. (zY) u+ ,

so that

cum- C)(0,1) 11 O . (ol)

Negleoting the factor i . o(')l in the right-hand member of (I.1) we
have calculated the displacement C as a function of cavitation number
and cavity length, the results being shown in FU. 7.

A mre exact theory than the one used in this report would have to
apply the free boundary condition at the free surface itself, that is to
say, on a surface lying between ya1 a n y = I + c It may be
seen intuitively that the results of such an improved theory for a given
value of f, 9would lie somewhere between our present results for that value
of f and the oorresponding results when f is replaced by f/t + e)
In other words, the plotted points in the Pigs. 4 - 6 are a little to the
left of their correct position. The horisontal ooordinaes should be
increased by a ao which lies between 1 and (+ *,), L(1 . 2c) in
the case of Fig. 5J. The small values assumed by a in Pig. 7 make it clear
that the correction involved would be small.
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The boundairy condition vhich has acblly been na.plied in this
report ensures that the axicl component of velocity sa ll be const: nt on
the cylinder y = 1. O-ing to the displacenent of the !et Loundary,
however, it is clea-r that this rxial comznnt of velocity rill not be
constant on the jet boundar-y. Accordingly we shall investigate the
difference tetvmen the velocity at infinity and the %xial . of
velocitj on the equator of the jet boun4Eary. Ideally, of colirse, this
difference should be zero, since the t.xial component is at this point
equal numerically to the v-locity ,ragnitude.

?rom eauation f,3.10) the 'ctuitl dife!ronce is given by

(I -in) U = Ce2±11 (0,1) 1i + o( e)1 I (12

Niow, frcn the definitions (3.2) ,nd ().9), it can be sho.rn that

from which it follo'.rs that, putting v = 0 for the fr-e baundsry,

1 6M (0,1) = - O(',0,,O) +(r 1o'0 )- 0(0,1 0,-1) (.3)y

Substituting this forapla in (1.2) Lnd usinr the la-eviously calculated
values of e, Ye can now plot (1 - m)U as a function of Q m-nd xc, the
results being sho\,n in Fip. 8.

In order to .rovi le ;- basis of coii'_ri~on we also show in Fig. 8, by
a dashed line, the , dlitional contrilution to the axial componnt of
velocity at the centre of the jet due to the presence of the free surface.
According to equations (2.6) aid (i.13) this mey be - reszed, after some
manipulation, as

(-1) -(m -) Y) : In2f -1 -2f O:f,0,0,-1)+2 (fO,O,-2)
U1 (X ,y ) = ( 

1.)

f It is clear fom Fig. 8 th.-t the viriation of the >:ial component
of velocity on tie free boundary is of -, srmaller cr-er than ti3 vtri~tions
produced at the jet centre by the reserice of the iree bouniaUr:. In fact,
the two effects differ by a factor of at le.,st 5 in all the cses ut ed in
constructing the curves for Figs. 4 - 6. The centre of the jet is chosen
as the point of the basis of comparison because the effect of the free
boundary is least there, so that the difference in order of the two effects
would be even uore marked elsevwhere.

Finally, it is necessary to examine the effect of the angle of inclina-
tion betvween the jet boundary and the axis of symictry. This results, of
course, in a discre.xincy betueen the axial component and the mgnitude of
the velocity. Since this is a conine effect thc order of mgnitude is given
by the square of the order of magnitude of the angle of inclination,
nm-nely (e/f)'. This in compared vith the juantity (1 - m), measuring the
variations in axial component, in fig. 9. Clearly the two effects are of
the same order, and, since the latter effect has been shown to be unimportant,
so is the former.
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It has been shown (ref. 5) by one of the present authors that infinite
series of the types appearing in equations (3.2) and (3.9) may be trans-
forucd into other seris which converge rapidly near the ori in. The
particular results required in the computation of equations (3.3), (3.4)
and (3.11) are listed below.

O(x,Y,u,-2) I- in jr(1+s)j + 7 C
11.0 V~- n f*

r(=,o,4) = [I r(is)" - o ,

(n+

wh:ere ra =x +y , a= r

and P,(s) is the Legendre polynomial of order n.

The coefficients C... have the following numeric:'! values:

C,-_1  = 0 0 ,., - - .375000

Co o  = + .435345 C ,,o a + 1.106824

Co, = 0 C l,, = - I

Cot = - .205911 C ,,t = .796824

Ce,, = + .658857 C ,,, = - 1.200470

Co,, = - 5.14657 C ,, = + 7.45829

C0 , : + 73.7500 C ,e = - 96.2205

C,,e = - 1632.77 C Soto = + 2070.91

C,,., = 0 (n > 0).
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